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Convenient synthesis of 1,2,3,4-tetrahydroquinolines via
direct intramolecular reductive ring closure
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Abstract—A simple and convenient procedure for the synthesis of 3-aryl-1,2,3,4-tetrahydroquinolines is reported. 3-Aryl-1,2,3,4-tetra-
hydroquinolines are directly obtained by reductive ring closure of 2-phenyl-3-(2-nitrophenyl)-propionitrile derivatives in moderate
to high yields.
� 2006 Elsevier Ltd. All rights reserved.
Tetrahydroquinolines (THQs) are important hetero-
cycles possessing diverse biological activities1 and multiple
applications.2 They are widely used as antimalarial,3

antibacterial,4 antiviral agents,5 and as key intermedi-
ates for the synthesis of photographic couplers.6

A number of methods have been reported for the con-
struction of THQ core.7 However, the application of
these methods is limited due to the inadequate diversity
of the substrates and/or products. In addition, the 3-
monosubstituted THQs have not been well studied and
only a few papers described their synthesis,8a,b and
reduction of 3-substituted quinoline is an ordinary alter-
native for 3-substituted THQ.8c,d The 3-aryl-substituted
THQs are aza analogs of isoflavans and isoflavans dis-
play promising biological activities.9 During the course
of our drug research we required certain 3-aryl-substi-
tuted THQs as intermediates. This prompted us to
devise a simple and efficient way to prepare them.
Herein, we wish to report our synthesis of THQs by
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Scheme 1. Catalytic hydrogenation of 3-(4-methoxy-2-nitrophenyl)-2-(4-met
using a direct intramolecular reductive ring closure
strategy.

We first attempted to prepare 7-methoxy-3-(4-methoxy-
phenyl)-1,2,3,4-tetrahydroquinoline by reductive ring
closure of 2-phenyl-3-(2-nitrophenyl)-propionitrile deriv-
ative (Scheme 1), which is easily obtained by conden-
sation of 4-methoxy-2-nitro-benzaldehyde with (4-meth-
oxy-phenyl)-acetonitrile followed by reduction with
NaBH4. The reaction was carried out in THF and
MeOH at ambient temperature. It was found that
3-(2-amino-4-methoxy-phenyl)-2-(4-methoxy-phenyl)-
propionitrile (4c) was formed as the only product in
95% yield but ring closure did not occur with PtO2

(10 wt %) as the catalyst. The same result was observed
when Pd/C (10 wt %) was used as the catalyst for 10 h.
Extension of the reaction time to 48 h yielded the desired
ring closure product 7-methoxy-3-(4-methoxy-phenyl)-
1,2,3,4-tetrahydroquinoline (3c), but the yield was
fairly low (26%), accompanied by trace amount of
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3-(2-aminophenyl)-2-phenylpropionitrile, as well as
the dehydrogenated product 7-methoxy-3-(4-methoxy-
phenyl)-quinoline (5c).

We next systematically investigated the effect of the
amount of catalyst, temperature, and pressure on the
yield of the desired product. When the amount of cata-
lyst was increased to 30 wt %, a significant increase of
yield was observed (60%, Table 1, entry 3). Higher yield
(74%, Table 1, entry 4) was obtained when the reaction
temperature was raised to 40 �C. Changing the pressure
was found to have no effect on the reaction. On the basis
of these findings, an optimum reaction condition can be
reached: 30 wt % of catalyst, 40 �C, and normal
pressure.

We then performed this reaction on a series of propio-
nitriles with the optimum reaction conditions (Scheme
2).10 The results are summarized in Table 2. Reactions
of substrates bearing electron-donating (Me and OMe)
substituents proceeded smoothly to give the corre-
Table 1. Effect of the reaction condition on the reductive ring closure
of 3-(4-methoxy-2-nitrophenyl)-2-(4-methoxy-phenyl)-propionitrile

Entry Pd/C (wt %) Temp (�C) 3c Yield (%)

1 10 rt 26
2 20 rt 53
3 30 rt 60
4 30 40 74
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Scheme 2. Synthesis of 3a–3t. Reagents and conditions: (i) Na, C2H5OH, 5

Table 2. Yields of 3a–3t

Entry R1 R2 R3

1 H H H
2 H H H
3 H H OMe
4 H OMe OMe
5 H H OMe
6 H H OMe
7 OMe OMe OMe
8 H OMe OMe
9 H 3,4-Methylenedioxyphenyl

10 H OMe H
11 H H H
12 H F H
13 H H OMe
14 H Me H
15 H H H
16 H H H
17 H H H
18 H H H
19 H H H
20 H H H
sponding 1,2,3,4-tetrahydroquinolines in good yields
(Table 2, entries 2–10, 14, 15), while reactions of
propionitrile derivatives bearing electron-withdrawing
groups (CF3 and CN) gave low to moderate yields
(Table 2, entries 16 and 17). The reaction mixture
was especially complicated and the yield was remark-
ably low in the case of cyano-bearing compound (entry
17). A low yield of 21% was also observed with bulky
naphthalenyl substituted substrate (entry 19). When
the C-3 substituent was thiophenyl, the reaction did
not happen, possibly due to poisoning of the palladium
catalyst by sulfur.

When 3-(2-aminophenyl) propionitrile was used as start-
ing material, we also got the desired ring closure prod-
uct. The reaction may proceed as Sajiki et al.11

described.

To explore the possible mechanism for the formation of
1,2,3,4-tetrahydroquinolines, we attempted to apply this
procedure to 2-(2-nitrobenzyl)-2-phenyl-butanenitrile.
2-Amino-3-ethyl-3-phenyl-3,4-dihydroquinoline N-oxide
was obtained as the major product, instead of the
expected product, 3-ethyl-3-phenyl-1,2,3,4-tetrahydro-
quinoline. This result confirmed the early report on
the reactions of substrates with variant R-substituents.12

This could not be explained by Sajiki’s postulation.

To rationalize these results, we postulate a mechanism
as follows (Scheme 3): first, the nitro group is reduced
to the corresponding hydroxylamine. On the one hand,
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h; (ii) NaBH4, THF, CH3OH; (iii) H2, Pd/C, THF, CH3OH.

R4 Ar 3 Yield (%)

H Phenyl 3a (57)
H 4-Methoxyphenyl 3b (73)
H 4-Methoxyphenyl 3c (74)
H 4-Methoxyphenyl 3d (64)
H 4-Fluorophenyl 3e (57)
H 3-Amino-4-methoxyphenyl 3f (62)
H 4-Methoxyphenyl 3g (64)
H 3,4-Methylenedioxyphenyl 3h (63)
H 3,4-Dimethoxyphenyl 3i (65)
H 4-Methoxyphenyl 3j (72)
OMe 4-Methoxyphenyl 3k (47)
H 4-Methoxyphenyl 3l (45)
H 3-Fluoro-4-methoxyphenyl 3m (50)
Me 4-Methoxyphenyl 3n (63)
H 4-Methylphenyl 3o (60)
H 3-Trifluoromethylphenyl 3p (48)
H 2-Cyanophenyl 3q (7)
H Biphenyl 3r (57)
H Naphthalen-1-yl 3s (21)
H Pyridin-2-yl 3t (54)
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Scheme 3. Possible mechanism for the formation of 1,2,3,4-tetrahydroquinolines.
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the produced hydroxylamine could be further reduced to
primary amine and then subjected to the expected ring
closure, and on the other hand, the hydroxylamine
could directly attack the cyano group and yield the N-
oxide product. The distance between the hydroxylamine
and cyano group may play a determinant role. In fact we
detected neither N-oxide product nor any hydroxyl-
amine intermediate during the whole procedure when
R is hydrogen. The mechanism of the reaction is valu-
able so as to be investigated further.

In summary, we have developed a simple route for con-
struction of the 3-aryl-substituted 1,2,3,4-tetrahydro-
quinolines (THQs). Further investigations on the scope
of the substrates for construction of other heterocyclic
systems are underway.
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